Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

nthtail(n, l) → cond(ge(n, length(l)), n, l)
cond(true, n, l) → l
cond(false, n, l) → tail(nthtail(s(n), l))
tail(nil) → nil
tail(cons(x, l)) → l
length(nil) → 0
length(cons(x, l)) → s(length(l))
ge(u, 0) → true
ge(0, s(v)) → false
ge(s(u), s(v)) → ge(u, v)

Q is empty.


QTRS
  ↳ Overlay + Local Confluence

Q restricted rewrite system:
The TRS R consists of the following rules:

nthtail(n, l) → cond(ge(n, length(l)), n, l)
cond(true, n, l) → l
cond(false, n, l) → tail(nthtail(s(n), l))
tail(nil) → nil
tail(cons(x, l)) → l
length(nil) → 0
length(cons(x, l)) → s(length(l))
ge(u, 0) → true
ge(0, s(v)) → false
ge(s(u), s(v)) → ge(u, v)

Q is empty.

The TRS is overlay and locally confluent. By [19] we can switch to innermost.

↳ QTRS
  ↳ Overlay + Local Confluence
QTRS
      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

nthtail(n, l) → cond(ge(n, length(l)), n, l)
cond(true, n, l) → l
cond(false, n, l) → tail(nthtail(s(n), l))
tail(nil) → nil
tail(cons(x, l)) → l
length(nil) → 0
length(cons(x, l)) → s(length(l))
ge(u, 0) → true
ge(0, s(v)) → false
ge(s(u), s(v)) → ge(u, v)

The set Q consists of the following terms:

nthtail(x0, x1)
cond(true, x0, x1)
cond(false, x0, x1)
tail(nil)
tail(cons(x0, x1))
length(nil)
length(cons(x0, x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))


Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

NTHTAIL(n, l) → COND(ge(n, length(l)), n, l)
LENGTH(cons(x, l)) → LENGTH(l)
COND(false, n, l) → NTHTAIL(s(n), l)
NTHTAIL(n, l) → GE(n, length(l))
COND(false, n, l) → TAIL(nthtail(s(n), l))
GE(s(u), s(v)) → GE(u, v)
NTHTAIL(n, l) → LENGTH(l)

The TRS R consists of the following rules:

nthtail(n, l) → cond(ge(n, length(l)), n, l)
cond(true, n, l) → l
cond(false, n, l) → tail(nthtail(s(n), l))
tail(nil) → nil
tail(cons(x, l)) → l
length(nil) → 0
length(cons(x, l)) → s(length(l))
ge(u, 0) → true
ge(0, s(v)) → false
ge(s(u), s(v)) → ge(u, v)

The set Q consists of the following terms:

nthtail(x0, x1)
cond(true, x0, x1)
cond(false, x0, x1)
tail(nil)
tail(cons(x0, x1))
length(nil)
length(cons(x0, x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

NTHTAIL(n, l) → COND(ge(n, length(l)), n, l)
LENGTH(cons(x, l)) → LENGTH(l)
COND(false, n, l) → NTHTAIL(s(n), l)
NTHTAIL(n, l) → GE(n, length(l))
COND(false, n, l) → TAIL(nthtail(s(n), l))
GE(s(u), s(v)) → GE(u, v)
NTHTAIL(n, l) → LENGTH(l)

The TRS R consists of the following rules:

nthtail(n, l) → cond(ge(n, length(l)), n, l)
cond(true, n, l) → l
cond(false, n, l) → tail(nthtail(s(n), l))
tail(nil) → nil
tail(cons(x, l)) → l
length(nil) → 0
length(cons(x, l)) → s(length(l))
ge(u, 0) → true
ge(0, s(v)) → false
ge(s(u), s(v)) → ge(u, v)

The set Q consists of the following terms:

nthtail(x0, x1)
cond(true, x0, x1)
cond(false, x0, x1)
tail(nil)
tail(cons(x0, x1))
length(nil)
length(cons(x0, x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 3 SCCs with 3 less nodes.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GE(s(u), s(v)) → GE(u, v)

The TRS R consists of the following rules:

nthtail(n, l) → cond(ge(n, length(l)), n, l)
cond(true, n, l) → l
cond(false, n, l) → tail(nthtail(s(n), l))
tail(nil) → nil
tail(cons(x, l)) → l
length(nil) → 0
length(cons(x, l)) → s(length(l))
ge(u, 0) → true
ge(0, s(v)) → false
ge(s(u), s(v)) → ge(u, v)

The set Q consists of the following terms:

nthtail(x0, x1)
cond(true, x0, x1)
cond(false, x0, x1)
tail(nil)
tail(cons(x0, x1))
length(nil)
length(cons(x0, x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GE(s(u), s(v)) → GE(u, v)

R is empty.
The set Q consists of the following terms:

nthtail(x0, x1)
cond(true, x0, x1)
cond(false, x0, x1)
tail(nil)
tail(cons(x0, x1))
length(nil)
length(cons(x0, x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

nthtail(x0, x1)
cond(true, x0, x1)
cond(false, x0, x1)
tail(nil)
tail(cons(x0, x1))
length(nil)
length(cons(x0, x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GE(s(u), s(v)) → GE(u, v)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LENGTH(cons(x, l)) → LENGTH(l)

The TRS R consists of the following rules:

nthtail(n, l) → cond(ge(n, length(l)), n, l)
cond(true, n, l) → l
cond(false, n, l) → tail(nthtail(s(n), l))
tail(nil) → nil
tail(cons(x, l)) → l
length(nil) → 0
length(cons(x, l)) → s(length(l))
ge(u, 0) → true
ge(0, s(v)) → false
ge(s(u), s(v)) → ge(u, v)

The set Q consists of the following terms:

nthtail(x0, x1)
cond(true, x0, x1)
cond(false, x0, x1)
tail(nil)
tail(cons(x0, x1))
length(nil)
length(cons(x0, x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LENGTH(cons(x, l)) → LENGTH(l)

R is empty.
The set Q consists of the following terms:

nthtail(x0, x1)
cond(true, x0, x1)
cond(false, x0, x1)
tail(nil)
tail(cons(x0, x1))
length(nil)
length(cons(x0, x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

nthtail(x0, x1)
cond(true, x0, x1)
cond(false, x0, x1)
tail(nil)
tail(cons(x0, x1))
length(nil)
length(cons(x0, x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LENGTH(cons(x, l)) → LENGTH(l)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

NTHTAIL(n, l) → COND(ge(n, length(l)), n, l)
COND(false, n, l) → NTHTAIL(s(n), l)

The TRS R consists of the following rules:

nthtail(n, l) → cond(ge(n, length(l)), n, l)
cond(true, n, l) → l
cond(false, n, l) → tail(nthtail(s(n), l))
tail(nil) → nil
tail(cons(x, l)) → l
length(nil) → 0
length(cons(x, l)) → s(length(l))
ge(u, 0) → true
ge(0, s(v)) → false
ge(s(u), s(v)) → ge(u, v)

The set Q consists of the following terms:

nthtail(x0, x1)
cond(true, x0, x1)
cond(false, x0, x1)
tail(nil)
tail(cons(x0, x1))
length(nil)
length(cons(x0, x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

NTHTAIL(n, l) → COND(ge(n, length(l)), n, l)
COND(false, n, l) → NTHTAIL(s(n), l)

The TRS R consists of the following rules:

length(nil) → 0
length(cons(x, l)) → s(length(l))
ge(u, 0) → true
ge(0, s(v)) → false
ge(s(u), s(v)) → ge(u, v)

The set Q consists of the following terms:

nthtail(x0, x1)
cond(true, x0, x1)
cond(false, x0, x1)
tail(nil)
tail(cons(x0, x1))
length(nil)
length(cons(x0, x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

nthtail(x0, x1)
cond(true, x0, x1)
cond(false, x0, x1)
tail(nil)
tail(cons(x0, x1))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ NonInfProof

Q DP problem:
The TRS P consists of the following rules:

NTHTAIL(n, l) → COND(ge(n, length(l)), n, l)
COND(false, n, l) → NTHTAIL(s(n), l)

The TRS R consists of the following rules:

length(nil) → 0
length(cons(x, l)) → s(length(l))
ge(u, 0) → true
ge(0, s(v)) → false
ge(s(u), s(v)) → ge(u, v)

The set Q consists of the following terms:

length(nil)
length(cons(x0, x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
The DP Problem is simplified using the Induction Calculus [18] with the following steps:
Note that final constraints are written in bold face.


For Pair NTHTAIL(n, l) → COND(ge(n, length(l)), n, l) the following chains were created:




For Pair COND(false, n, l) → NTHTAIL(s(n), l) the following chains were created:




To summarize, we get the following constraints P for the following pairs.



The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation [18]:

POL(0) = 0   
POL(COND(x1, x2, x3)) = -1 - x1 - x2 + x3   
POL(NTHTAIL(x1, x2)) = -1 - x1 + x2   
POL(c) = -2   
POL(cons(x1, x2)) = 1 + x2   
POL(false) = 0   
POL(ge(x1, x2)) = 0   
POL(length(x1)) = 0   
POL(nil) = 0   
POL(s(x1)) = 1 + x1   
POL(true) = 0   

The following pairs are in P>:

COND(false, n, l) → NTHTAIL(s(n), l)
The following pairs are in Pbound:

COND(false, n, l) → NTHTAIL(s(n), l)
The following rules are usable:

falsege(0, s(v))
ge(u, v) → ge(s(u), s(v))
truege(u, 0)


↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ NonInfProof
QDP
                            ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

NTHTAIL(n, l) → COND(ge(n, length(l)), n, l)

The TRS R consists of the following rules:

length(nil) → 0
length(cons(x, l)) → s(length(l))
ge(u, 0) → true
ge(0, s(v)) → false
ge(s(u), s(v)) → ge(u, v)

The set Q consists of the following terms:

length(nil)
length(cons(x0, x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 0 SCCs with 1 less node.